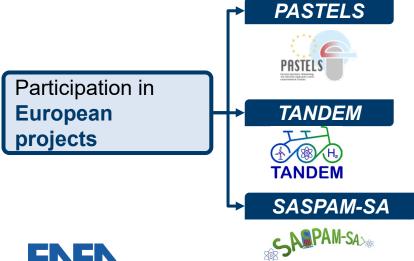


ENEA contribution to national programme on SMR/AMR

Mariano Tarantino

Responsabile Divisione Sistemi Nucleari per l'Energia Dipartimento Nucleare



ENEA activities on SMRs Technology

In-depth studies for the characterization of the passive systems modeling from the experimental and computational point of view including reliability assessment.

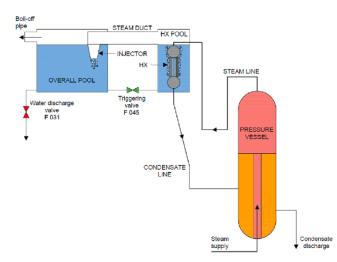
- Thermal-hydraulic codes validation (TRACE, RELAP, CATHARE)
- Scaling analyses to characterize the code scaling-up capabilities
- Severe Accident Simulations

works on improving numerical tools to accurately simulate some of the most promising safety passive systems.

develop methodologies and tools to facilitate the safe and efficient integration of SMRs into smart low-carbon hybrid energy systems.

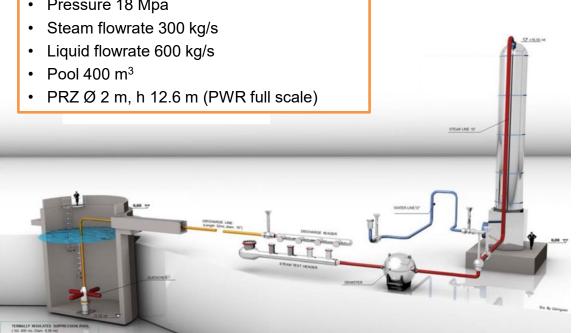
aims to investigate the applicability and transfer of the operating large LWR knowledge to the integral PWR (iPWR).

Experimental Facilities: PERSEO(in-Pool Energy Removal System for Emergency Operation)


- □ Full scale facility located at SIET Laboratories (Piacenza)
- PRIMARY SIDE: Vessel (43 m³, 13 m height), steam Feed line (10 in), condensate Drain line (6 in), full scale model of SBWR IC heat exchanger (two cylindrical headers and 120 vertical pipes (5 cm OD, 1.8 m average length)
- SECONDARY SIDE: HX pool (29 m³) and Overall Pool (173 m³, 5.8 m height) connected at the bottom by a liquid line (0.2 m ID) and at the top by a steam duct (1.1 m ID) ending with an injector flowing into the Overall Pool about 1.3 m below the water level

Passive system not in operation

Passive system in operation



VAPORE Facility

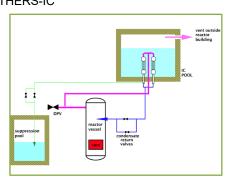
Designed for full-scale thermal-mechanical and fluid-dynamic tests on components and systems feeded by saturated water or steam.

- Power 1.4 MW
- Pressure 18 Mpa

Examples of past experiences

- Safety valves and spargers of Montalto di Castro NPP
- Depressurization system of WH AP600

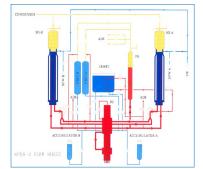
Activity planning

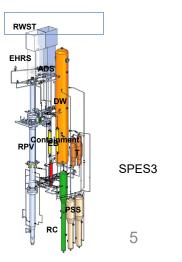

- 2000 stop of operations
- 2025-2027 facility refurbishment and uprating up to 3 MW, funded by MASE
- 2027 sparger test

Experimental support at SIET for safety assessment of SMR

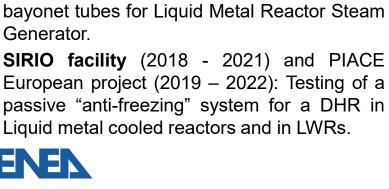
The SIET company has been involved in several experimental campaigns in the last tree decades:

- SPES2 (1992 1994): Integral Test Facility for WEC AP-600 simulation. Full T-H conditions, Volume and power scale ~1/400; Full height.
- ☐ GEST-PANTHERS (1994 1996): Isolation Condenser qualification for GE-SBWR at full scale and full T-H conditions.
- □ SPES3-IRIS (2005-2011): helical coil testing and Integral Test facility design and partial construction

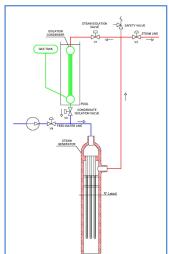

PANTHERS-IC



SPFS2



Experimental support at SIET for safety assessment of SMR


- NuScale Power TF1 and TF2 (2011 2015 and 2020 - 2024): helical coil testing and helical coil steam generator mock-up characterization at full scale (reduced number of tube row) and full T-H conditions.
- NuScale Power TF3 (2017 2024): Helical coil steam generator mock-up at full scale (reduced number of tube row), cold conditions, for Fluid Induced Vibrations investigation.
- **HERO and HERO-2** (2015 2017): Testing of Generator.
- Liquid metal cooled reactors and in LWRs.

TF2 under construction

PIACE

Experimental support at SIET for safety assessment of SMR

ELSMOR European Project H2020 (2018-2023)

Towards European Licensing of Small MOdular Reactors

ELSMOR aimed to create methods and tools for the European stakeholders to assess and verify the safety of light water SMRs to be deployed in Europe.

In the frame of the improvement of the European experimental infrastructures, SIET designed, built and operated a facility to test an innovative DHRS based on a plate-type heat exchager in a reduced elevation natural circulation loop for the E-SMR (Nuward type).

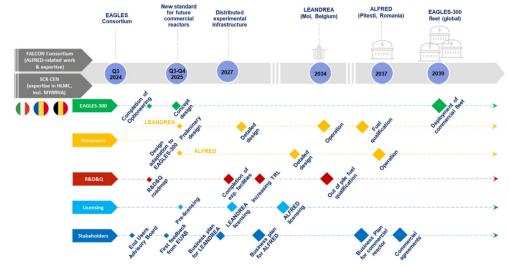
Several tests were executed for system performance verification:

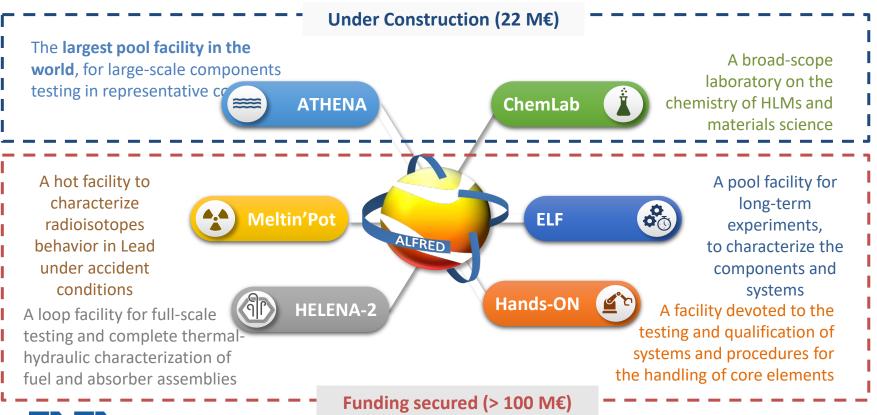
- tests at different primary side temperatures;
- test at different filling ratios of the secondary side;
- tests with non-condensable gas in the secondary side;
- tests with different pressure drops in the piping, primary and secondary side;
- tests with different levels and temperatures in the HX-Pool;
- tests with two-phase conditions in the primary side (steam in the Separator).

EAGLES

☆ EAGLES

- · Competitive economics
- · Proven passive safety features
- · Sustainable closed fuel cycle
- · High temperature heat
- · Customers oriented
- · Commercial fleet deployment by 2040




- EAGLES-300 Technology: land-based medium size Lead-cooled Fast Reactor for electrical and thermal output, fueled with MOX in a closed cycle
- EAGLES Consortium (established on 16-Jun-2025): gathering Ansaldo Nucleare (IT) as industrial leader, ENEA (IT), RATEN (RO), SCK CEN (BE)
- Last year achievements: identification of design options, setup of IAEA EBP for licensing harmonization (with FANC, CNCAN, ISIN), public tenders for experimental infrastructure launched in Romania and Belgium, engagement with Romanian supply chain, export control requests started
- 2030s Major Milestones: setup of an End-User Advisory Board (2025), experimental infrastructure completed (2028), LEANDREA COD (2034), ALFRED COD (2037), EAGLES-300 commercial deployment (2039)

Technological Roadmap

ALFRED and FALCON Consortium

ATHENA Facility

the first step of ALFRED experimental infrastructure

- 2.21 MW Core simulator
- Full height bayonet tube heat exchanger
- Main Vessel hosting 800 tons of lead

Experiments to be performed:

- Fuel assembly performance
- Chemistry control in large pools
- SGTR

newcleo

REACTOR DESIGN: Small Modular (SMR) + **Lead-cooled Fast Reactors** (LFR) = AMR

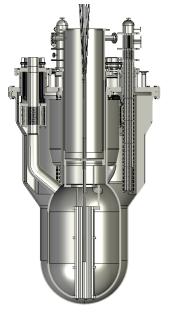
newcleo is working to design, build, and operate Gen-IV Advanced Modular Reactors (AMRs) cooled by liquid lead

FUEL MANUFACTURING: Mixed Uranium Plutonium Oxide (MOX)

MOX and Fast Reactors allow the multirecycling of nuclear waste into new fuel with no new mining for generations

INTRINSICALLY SAFE power production

COMPETITIVE energy cost


CIRCULAR nuclear waste recycling

- €570 million of private funds ~€70 million revenues in 2024
- French first licensing stage completed for the reactor in Chinon and the fuel production facility in Nogent
- Selected by France 2030 and the **European Industrial Alliance** on SMRs

PRECURSOR

RUTSCHIE

LFR-AS-30

newcleo's plan-to-market

R&D and Precursor

2026

Several R&D and qualification facilities, and a 10 MW nonnuclear reactor with turbogenerator (Precursor) built in ENEA-Brasimone

Design, manufacturing and operation in progress

MOX production

2030

FR-MOX production facility starting from available (separated) material in France

LFR-AS-30

2031

30 MWe nuclear irradiation reactor with core outlet at 440°C and later 530°C in France

LFR-AS-200

2033

200 MWe FOAK, also for nonelectrical uses (e.g. cogeneration and chemicals production)

Basic Design in progress Licensing in progress for both facilities UK Licensing started in 2024

Ongoing M&A Acquisition programme

Basic Design in progress

ENEA – *new*cleo Agreement

16 March 2022

newcleo signs agreement with ENEA to develop safe and innovative nuclear systems

Press releases

Download &

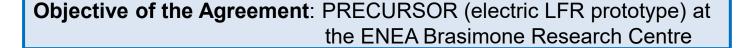
newcleo's Generation-IV reactors to be built outside of Italy. newcleo, the clean and safe nuclear technology company developing innovative reactors, signed today an agreement for the development of safe and innovative Generation-IV nuclear systems with ENEA, the Italian national agency for new technologies, energy and sustainable economic development.

la Repubblica BOLOGNA

Accordo Enea-Newcleo per studiare i nuovi reattori di quarta generazione

Nucleare, 50 milioni al Brasimone

Nuova linfa al Brasimone, Grazie a un accordo annunciato ieri tra Enea e la società Newcleo con sede a Londra, sulle sponde del lago sull'Appennino bolognese si studieno realizzati fuori dall'Italia. Un in- La centrale del Brasimone vestimento da 50 milioni che porte


per la montagna, dopo la conclusio tuita nel 2021 da Stefano Buono, imne felice della vertenza Saga Cof- prenditore e fisico italiano che ha lafee, il rilancio delle Terme di Porret- vorato per 10 anni col premio Nobel ta e gli investimenti legati al Pnrr. Carlo Rubbia al Cern e ha poi creato vestendo nelle strutture del Brasi-Questa volta si parla di energia nu- un'altra start up, venduta nel 2018 a mone – spiega invece Buono – concleare, ovvero quello di cui si occu. Novartis per 3,9 miliardi di dollari. tribuiremo all'avanzamento della ripava il centro finea prima del refe- In base all'accordo finea e New- cerca in Italia». Esultano le istituziorendum del 1987. Da allora il Brasi- cleo investiranno al Brasimone, che ni locali. «È la più grande operaziomone, dove lavorano una settanti- tra i comuni di Camugnano e Casti- ne di rilancio di un sito strategico na di persone, si è specializzato in glione dei Pepoli conta 400 ettari di per il Paese», conclude l'assessore altri ambiti di ricerca come la fusio: superficie e 17 diversi edifici. Ver- regionale Vincenzo Colla

ne nucleare e lo studio dei metalli fluidi. Newcleo invece è una start Ed è un'altra boccata d'ossigeno up che fa ricerca sull'energia costi-

i per realizzare un prototipo elettrico di reattore raffreddato al piomo senza l'uso di materiali radioatti ri o combustibile nucleare. Per 50 milioni di investimenti, appunto, e un team di 25-30 ingegneri che lavoeranno "in planta stabile per circa 10 anni", spiegano Enea e Newcleo «Collaboreremo per garantire la

pianti da realizzarsi all'estero spiega Gilberto Dialuce, presidente li <u>Enea</u> – ma con ricadute rilevanti di investimenti e occupazione a li vello locale»

ENEA – *new*cleo Agreement

CAPSULE

operational since December 2023

Facility to test various kinds of steel, bare and coated, in stagnant lead under oxygen-controlled concentration, essentially between 10⁻⁸ - 10⁻⁶ wt %; temperatures span between 450 - 750 °C

CORE 200 kW

operational in March 2024

Loop-type facility to test various kinds of steel, bare and coated, in fluent lead under oxygen-controlled concentration, essentially between 10⁻⁸ and 10⁻⁶ wt %; temperature in the corrosion test section 650 °C and velocity 1 m/s; in the erosion test section the temperature is 520 °C and the velocity 10 m/s.

It will also be used to test the effectiveness of cold traps and mechanical filters

OTHELLO 2 MW

operational in 2026

Loop-type facility with a Fuel Pin Bundle Simulator and a mock-up of *new*cleo Steam Generator with three full length tubes. It will be used to test a Fuel Pin Bundle Simulator to validate thermal-hydraulic computer codes, to appreciate the consequences of partial interpins obstructions, to check the risk of fluid induced vibrations.

Also, to test the behaviour, both lead side and water/steam side, of the Steam Generator

PRECURSOR 10 MW

operational in 2027

Pool-type integral test facility with an electrical resistors bundle, and three Steam Generators at a thermal reduced scale, and the associated turbine-generator set. It will be used to test the global behaviour of the plant in stationary and transient mode, the inset of lead flow both in hot and cold plenum and of possible stagnant zones, the effectiveness of the DHR system, test various mechanisms as the control rods

MANUT

conceptual phase

It is a "cold" facility to test the fuel hanging and handling systems as well as the rotating plugs operation during refuelling campaign. This facility is just at a first conceptual draft.

Westinghouse LFR: AMR Phase 2 Program (UK)

ANSALDO Nuclear

- The VLF is a Pb loop test facility to be used for testing key components of the Westinghouse LFR, e.g.,
 - Fuel bundle mockup
 - Primary heat exchanger
- The PHRF is a test facility simulating the Westinghouse LFR's Passive Heat Removal System (PHRS)

Westinghouse

- Lead Freezing test rig
- Heat exchanger failure testing
- High Temperature Lead Corrosion Test

PHRF

FDS Team (CASHIPS – China)

FDS Team (CASHIPS - China)

- ♦ LBE pool (300°C 400°C)
- MCP @ 220 kg/s , 2,5 bar
- CS (7 FPS) @ 2,5 MW
- DWBT HX @ 100 bar

