

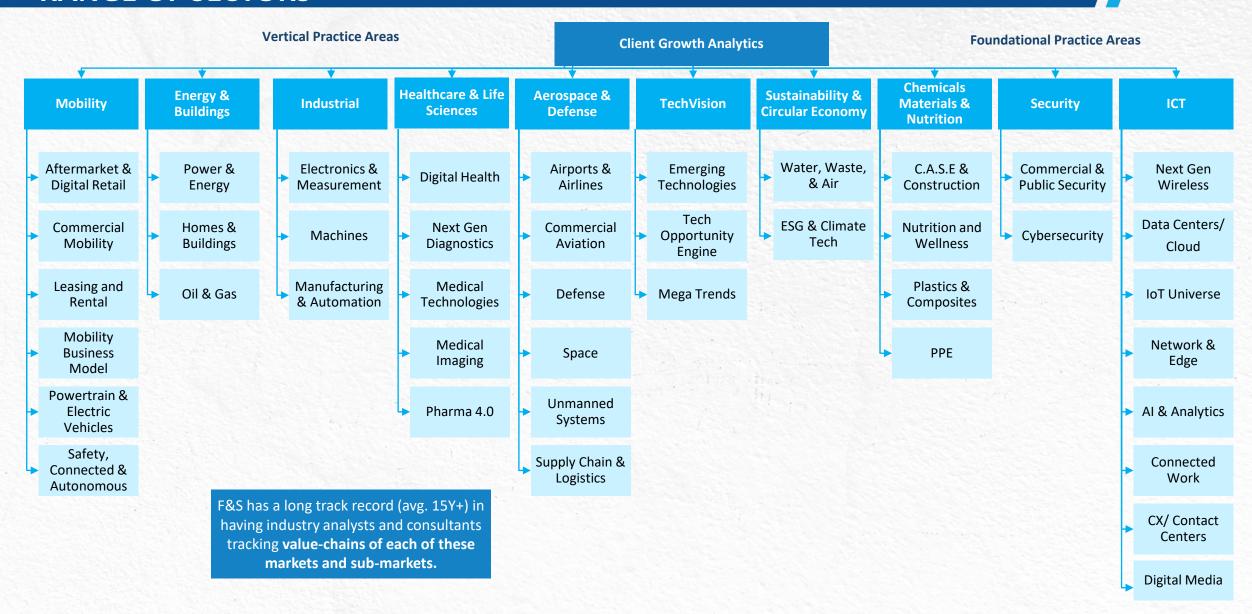
FROST & SULLIVAN – WHO WE ARE

A <u>LEADING RESEARCH AND ADVISORY FIRM</u> WITH OFFICES IN <u>30 COUNTRIES</u>, WHO HAS PARTNERED WITH CORPORATIONS, CITIES, GOVERNMENTS, AND INVESTOR COMMUNITIES OVER THE PAST 60 YEARS TO <u>IDENTIFY</u>, <u>PRIORITIZE</u>, <u>AND EXECUTE OPPORTUNITIES THAT POWER CLIENTS TOWARD A FUTURE SHAPED BY GROWTH</u>.

3-Tiered Growth System

1.Generate
2.Evaluate
3.Implement

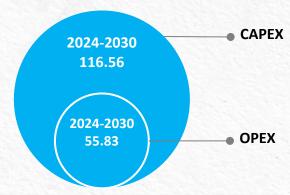
Global Coverage
30+ Offices
Around the World
Advisory force on the field


360° Market Coverage to identify growth opportunities across multiple topics areas

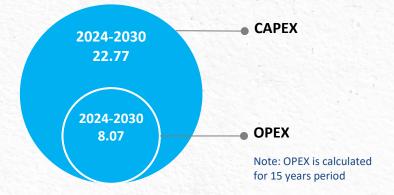
In-House Market Insights & Intelligence combined with Strategy Consulting and Be-Spoke Advisory Solutions.

Trusted Partner for 16,000+ Clients Worldwide
(Consolidated relationships with C-levels and decision-makers across industries)

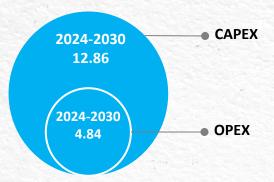
OUR INDUSTRY EXPERTISE: OVER 40 PROGRAM AREAS SERVING A WIDER RANGE OF SECTORS


CCUS IS ONE OF THE KEYS TO UNLOCKING THE FULL POTENTIAL OF DECARBONIZATION

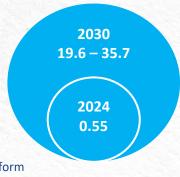
The cumulative market size for the CCUS value chain including opex for capture, transport and storage from 2024 to 2030 is projected to be US\$200-\$250 billion. End—to—end digital solutions to measure, monitor and manage carbon dioxide across the CCUS value chain is expected to be \$100 – 150 billion


Carbon Capture Market

Total CAPEX and OPEX in BUSD


Carbon Storage Market

Total CAPEX and OPEX in BUSD


Carbon Transport Market

Total CAPEX and OPEX in BUSD

Carbon Utilization Market

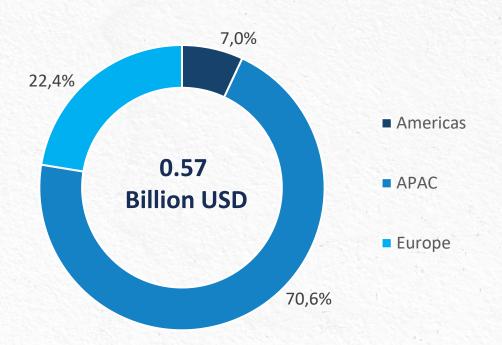
Total Utilization Market Potential in BUSD

*Including Enhanced Oil Recovery

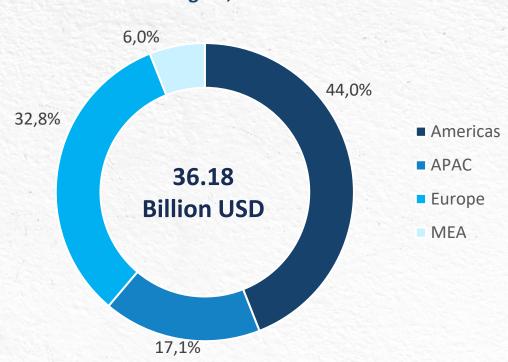
THE CARBON CAPTURE MARKET IS GAINING MOMENTUM WITH INCREASED INVESTMENT

The carbon capture market is forecast to grow at an CAGR of 39.5% between 2025 and 2030, mainly driven by government regulations, technical advancements

CCUS: Carbon Capture Market Size and Annual Capacity Addition Forecast, Global, 2024-2040


Year

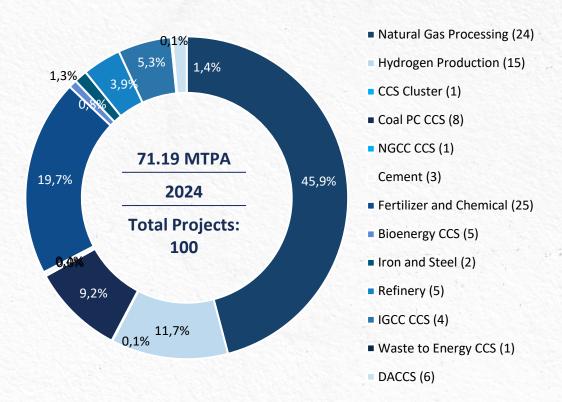
REGIONAL OUTLOOK OF CARBON CAPTURE MARKET – POLICY AND FUNDING WILL DRIVE THE ADOPTION



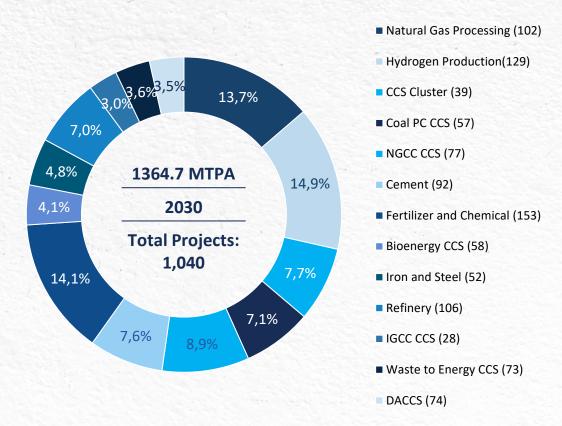
Regional CCUS market growth is primarily driven by supportive policies and incentives, availability of transport & storage infrastructure, industrial cluster development, and strong financing & regulatory frameworks tailored to local emission and resource profiles.

Carbon Capture Market Percentage Revenue Share by Region, 2024

Carbon Capture Market Percentage Revenue Share by Region, 2030

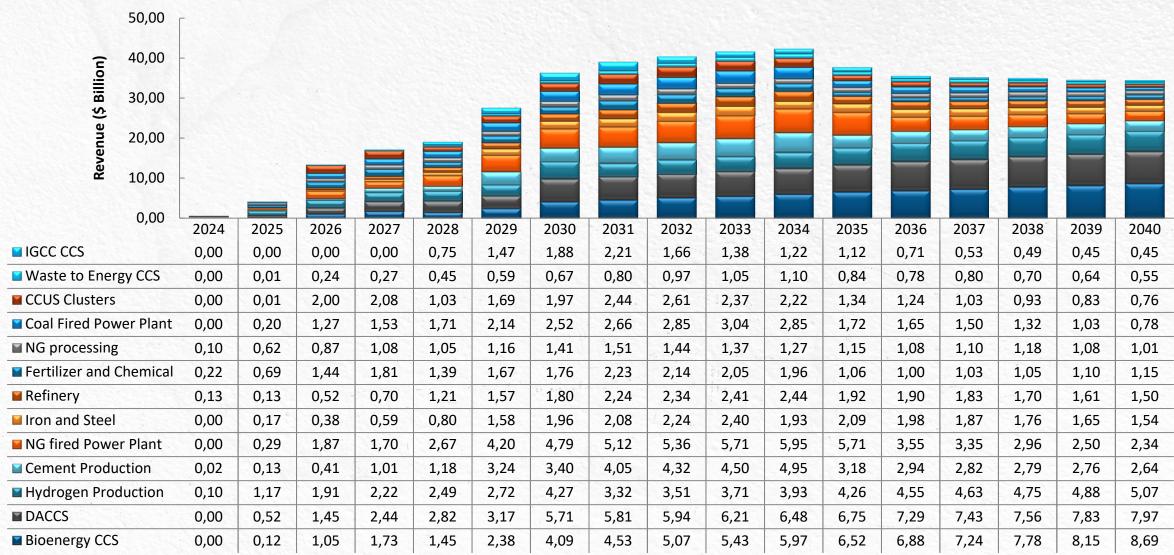


DIVERSE INDUSTRIES INCLUDING HARD-TO-ABATE SECTOR CONTRIBUTE TO GROWTH OF CARBON CAPTURE



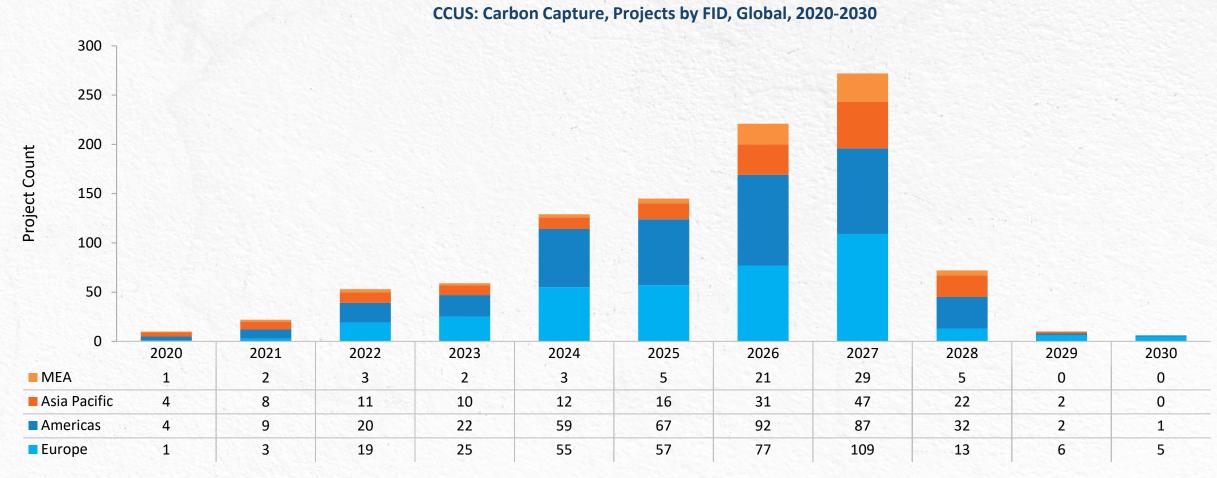
Although the Oil & Gas Industry is front runner in adopting CCUS, hard-to-abate industries such as cement, iron and steel, fertilizers and chemicals will be the fastest growing market mainly driven by regulatory requirements.

CCUS: Cumulative Carbon Capture Capacity in million tons per annum (MTPA), Percentage Share by Industry, Global, 2024



CCUS: Cumulative Carbon Capture Capacity in MTPA, Percentage Share by Industry, Global, 2030

REVENUE FORECAST BY INDUSTRY APPLICATION OF CARBON CAPTURE


CCUS: Revenue Forecast by Industry Application, Global, 2024-2040

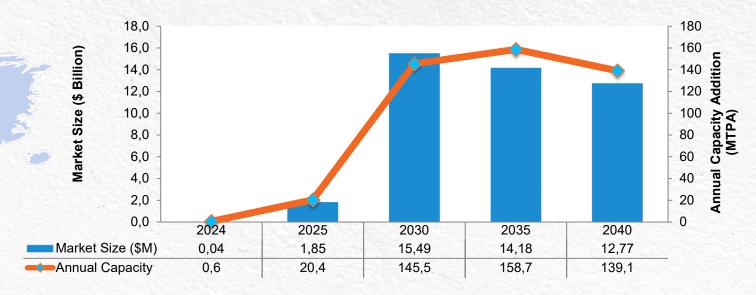
CARBON CAPTURE, TRANSPORT AND STORAGE PROJECTS ARE GAINING MOMENTUM LEADING TO INCREASE IN FINAL INVESTMENT DECISION (FID)

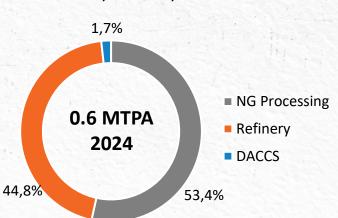
Oil and gas industry is the largest developer of CCUS project with more than 200 projects in refinery, hydrogen, chemical and fertilizers to reach FID between 2024 and 2027. Heavy industries such as Iron & Steel and Cement are catching up in terms of project development with 131 projects between 2020 and 2030.

Source: Frost & Sullivan,

CARBON CAPTURE, UTILIZATION AND STORAGE REGIONAL TRENDS AND ANALYSIS – AMERICAS

CCUS: Carbon Capture Market Size and Annual Capacity Addition Forecast, Americas, 2024-2040

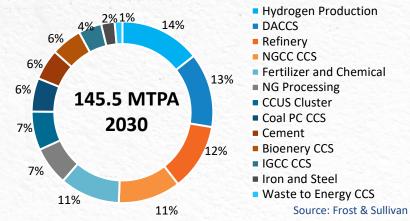

CO, CAPTURE


CO₂
37.5 Mtpa

The 40 commercial operational facilities have a combined total capture capacity of 37.5 Mtpa.

Most of these projects are Fertilizer and Chemical, NG processing and Hydrogen Production and DAC.

- The "Big Beautiful Bill" for CCUS—primarily the measures in the
 Inflation Reduction Act (IRA) is a significant step towards
 reducing carbon emissions in the U.S., increasing the 45Q tax
 credit to up to \$85/ton for point-source capture and \$180/ton
 for direct air capture, while lowering project size thresholds and
 improving project bankability.
- Infrastructure Investment and Jobs Act (IIJA) allocates over \$12 billion for CCUS infrastructure, including \$3.5 billion for DAC hubs, \$2.5 billion for CO₂ pipelines, and funding for storage site development and permitting.

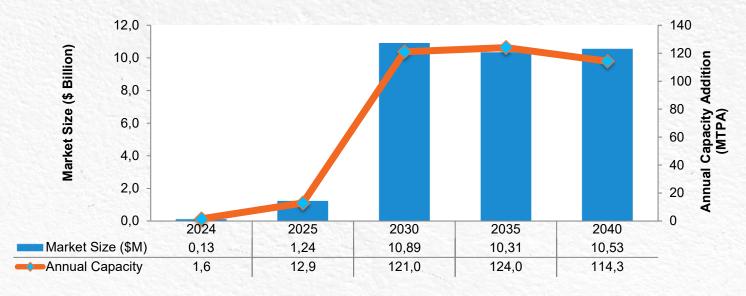


CCUS: Annual Capacity Share, By

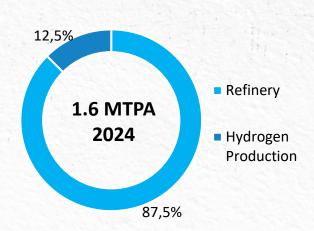
Industries, Americas, 2024

CCUS: Annual Capacity Share, By Industries, Americas, 2030

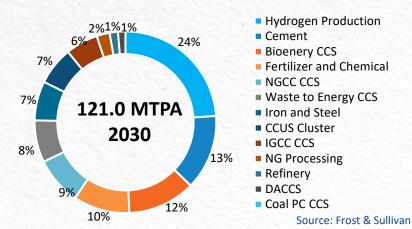
CARBON CAPTURE, UTILIZATION AND STORAGE REGIONAL TRENDS AND ANALYSIS – EUROPE


CO, CAPTURI

CO₂
6.1 Mtpa

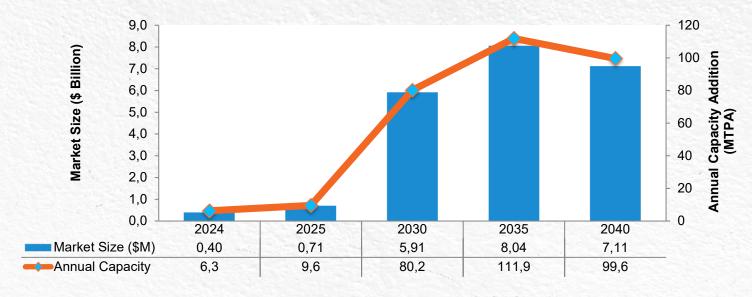

The 20 commercial operational facilities have a combined total capture capacity of 6.1 Mtpa. Most of these projects are Hydrogen Production, NG processing, Bioenergy CCS, Cement and waste to Energy.

- CCUS in Europe faces challenges from fragmented regulations, limited infrastructure, uncertain business models, and public opposition, despite strong climate policies and technical potential.
- Europe's CCUS growth is driven by ambitious climate policy, high carbon prices, North Sea storage hubs, generous EU funding, and rising demand for decarbonizing heavy industry.

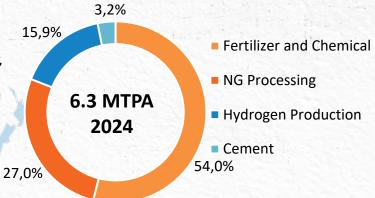

CCUS: Carbon Capture Market Size and Annual Capacity Addition Forecast, Europe, 2024-2040

CCUS: Annual Capacity Share, By Industries, Europe, 2030

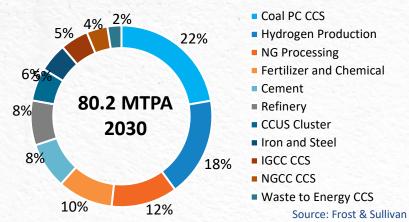
CARBON CAPTURE, UTILIZATION AND STORAGE REGIONAL TRENDS AND ANALYSIS – ASIA PACIFIC


CO₂ GAPTORE

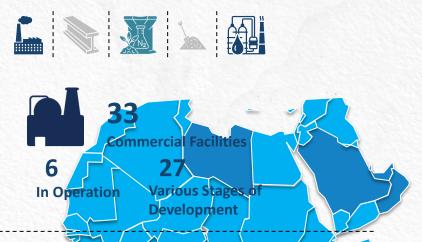
CO₂
23.2 Mtpa


The 34 commercial operational facilities have a combined total capture capacity of 23.2 Mtpa. Most of these projects are Fertilizer and chemical, Hydrogen Production, NG processing, Coal PC CCS.

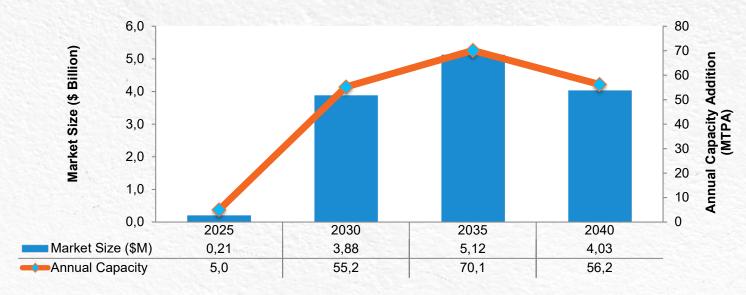
- CCUS in Asia Pacific is gaining momentum due to net-zero targets, industrial cluster decarbonization, vast storage potential, regional CO₂ hubs, and growing investment from both governments and major private players.
- Asia Pacific faces major hurdles due to weak regulatory frameworks, insufficient financial incentives, infrastructure and technical gaps, and limited public and regional coordination, despite growing interest and potential.

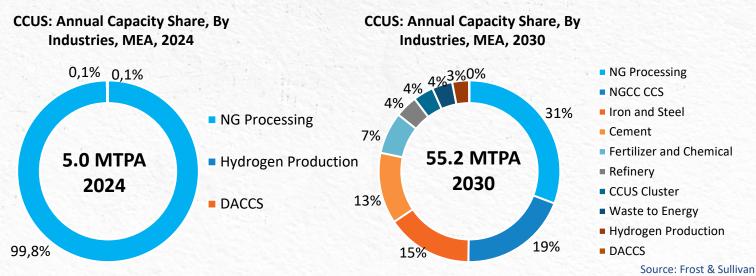

CCUS: Carbon Capture Market Size and Annual Capacity Addition Forecast, Asia Pacific, 2024-2040

CCUS: Annual Capacity Share, By Industries, Asia Pacific, 2024



CCUS: Annual Capacity Share, By Industries, Asia Pacific, 2030


CARBON CAPTURE, UTILIZATION AND STORAGE REGIONAL TRENDS AND ANALYSIS – MEA



CO₂ CAP TO The 6 commercial operational facilities have a combined total capture capacity of 4.8 Mtpa. Most of these projects are Fertilizer and chemical, Hydrogen Production, NG processing, Iron and Steel.

- CCUS in the Middle East and Africa is driven by abundant geological storage, strong oil and gas industry alignment, national decarbonization plans, blue hydrogen exports, and wellfunded state-led initiatives, positioning the region as a strategic CCUS growth hub.
- Middle East and Africa is constrained by weak regulatory frameworks, limited carbon pricing, underdeveloped infrastructure, low technical readiness, and competing development priorities, especially in Africa.

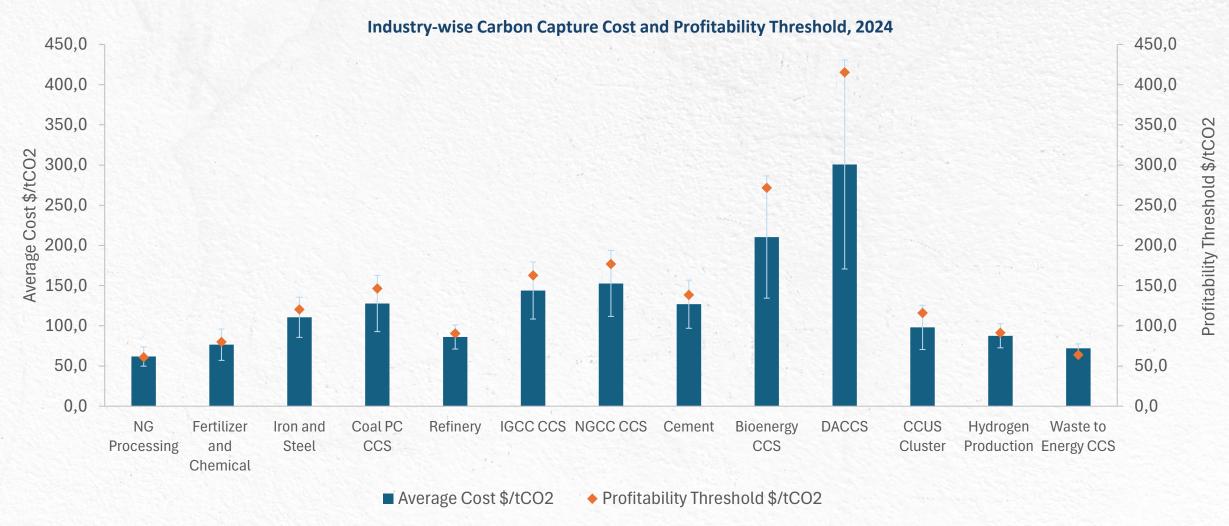
CCUS: Carbon Capture Market Size and Annual Capacity Addition Forecast, MEA, 2024-2030

SEPARATION TECHNOLOGY BENCHMARKING ACROSS VARIOUS INDUSTRY VERTICAL

Industry	Chemical Absorption	Physical Absorption	Physical Adsorption	Membrane Separation	Cryogenic Separation	Oxy-fuel Combustion	Chemical- looping	Calcium- looping	Others	DAC
Coal Fired Power CCS		•		•	•	•	•	•	•	
NGCC CCS		•	•	•	•	•		•	•	
GCC CCS		•							•	
ron and Steel		•	•	•		•		•	•	
Cement		•	•		•	•	•	•	•	
ertilizer and Chemical		•	•	•	•	•		•	•	
definery		•	•	•	•				•	
IG Processing		•	•	•	•	•	•	•	•	
lydrogen Production		•		•	•	•		•		
ioenergy CCS			•	•		•			•	
Vaste to Energy		•	•					•		

Commonly Used

Less Likely Used


COMPARISON OF MAJOR CARBON CAPTURE TECHNOLOGIES

Technology	Main Mechanism	Operating Conditions	CO₂ Purity	Energy Demand	Key Advantages	Limitations	
Chemical Absorption	CO₂ reacts chemically with liquid amines forming carbamates	40–120 °C	95–99%	High (heat for solvent regeneration)	High selectivity, mature tech, continuous operation	High energy use, solvent degradation, corrosion	
Physical Absorption	CO ₂ dissolves physically in solvent under pressure	<50 °C, high pressure	90–99%	Moderate	Efficient at high pressure, low degradation	Ineffective at low pressure, high solvent cost	
Physical Adsorption	CO ₂ adsorbs on porous solids via van der Waals forces	Ambient-100 °C	85-95%	Moderate	Low cost, regenerable, scalable	Sensitive to moisture, lower selectivity	
Cryogenic Separation	CO₂ condensed by cooling to low temperatures	−100 °C to −140 °C	99+%	Very high (refrigeration)	Produces pure CO ₂ , no chemicals needed	High energy cost, complex refrigeration	
Oxy-Fuel Combustion	Fuel burned in pure $O_2 \rightarrow$ flue gas is mainly CO_2 and H_2O	>1,000 °C	95–99%	High (O₂ generation cost)	Simplifies CO ₂ capture, compatible with existing plants	Oxygen production energy cost	
Chemical Looping	Metal oxide transfers O_2 to fuel; CO_2 separated inherently	800–1,000 °C	95–99%	Moderate	Inherent CO_2 separation, no N_2 dilution	Complex reactors, material sintering	
Calcium Looping	Cyclic CaO \longleftrightarrow CaCO ₃ reaction captures CO ₂ at high T	600–900 °C	90–95%	High (calcination step)	Abundant, cheap material	Sorbent degradation, heat management	
Membrane Separation	CO ₂ selectively permeates polymeric or inorganic membranes	Ambient-200 °C	80-95%	Moderate	Compact, modular, no solvent	Selectivity-permeability tradeoff, fouling	
Direct Air Capture (DAC)	CO₂ captured from air using solid (amine) or liquid (hydroxide) sorbents	Ambient T & P	95–99%	High (due to dilute CO₂)	Negative emissions, flexible siting	High cost, energy intensive	

CCUS COST VS PROFITABILITY THRESHOLD - BY INDUSTRY

Average costs vary substantially, depending on the end user industry and also new build vs. retrofit. DACCS and bioenergy have the highest profitability threshold meaning that they either need specific incentives or project cost reductions.

TRENDS AND RISKS IN CARBON CAPTURE, UTILIZATION, AND STORAGE (CCUS)

TRENDS

CCUS Hubs: Reduced cost and risk

Integrated Value Chains: Ultimately connecting capture

with end use via clusters

Policy and Incentives: Clear regulatory frameworks and

incentives pivotal to success

Public-Private Partnerships: Governments and private

companies are partnering for risk sharing

Subscription Models: Carbon capture as a service

RISKS

High Costs: Significant upfront investment required

Storage Risks: Uncertainties regarding the long-term

storage of CO2

Transportation Risks: Transporting CO2, especially in

liquid form, requires high-pressure pipelines

Policy and Incentives: Potential for

changes/deviations/delays

Market Volatility: Fluctuations in demand impacts

through the value chain

Supply Chain Disruptions: Complexity in the supply

chain raises the potential for delays

CCUS COMPANY LANDSCAPE ... DIVERSE ECOSYSTEM OF PLAYERS

Carbon Capture Solutions

RIVERS

Sumitomo 🗫

CCUS Digital Solutions

Utilization & Upcycling

CarbiCrete twelve LanzaTech

Project Developers

eon

Suez

Source: Frost & Sullivan

KEY TAKEAWAYS

- Carbon capture is largest + fastest growing segment across the CCUS value-chain. Potential ROI between 10% to 20% of project lifecycle possible policies and regulations framework across different region will be critical.
- In short to mid term, CCUS will find a wider application in hard to– abate industries such as cement, iron and steel, fertilizers and chemical production by retrofitting the existing plants.
- Like any other industrial technologies, CCUS is heavily dependent on economies of scale. **Modularization can** bring down the cost by building standardized plants and mass production techniques.
- Carbon capture is energy intensive, accounting for 25%-30% of OPEX. **90% of industry players believe energy consumption is the one of the biggest challenges in scaling carbon capture projects,** so energy efficiency is key.
 - Converting carbon valuable products such as fuels, chemicals, building materials can create new revenue streams, making carbon capture more financially attractive.

FOR ADDITIONAL INFORMATION

Jonathan Robinson

Practice Lead
Energy & Buildings

Jonathan.robinson@frost.com

Mahesh Radhakrishnan

Senior Analyst

Energy

Mahesh.radhakrishnan@frost.com